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    Abstract – This report analyses the spread of 

worm viruses with varied attack strategies 

though peer-to-peer networks, outlining the 

importance of high-quality detection methods 

and good user proactiveness for the 

minimisation of the spread of worms through a 

network.  
 

1. Introduction 

Computer viruses, much like biological 

pathogens, self-replicate by taking advantage of 

system weaknesses and attaching themselves to 

a host program to cause the virus instructions to 

be executed. (Chen, T. M., et al., 2004) 

Worm viruses travel from system to system 

through the networks used to send 

communication between systems. These were 

built with the intent of distributing workloads, 

but instead, they soon became considered to be 

destructive. (Spafford, E. H., 1989).  

In 2017, a worm virus known as “WannaCry” 

infected NHS organizations. This attack 

encrypted critical information and demanded a 

ransom. (NHS England, 2023). This became 

one of the most significant virus attacks seen, 

affecting over a third of systems within the 

NHS – highlighting the importance of detection 

and prevention tactics to avoid a full network 

infection.  

The current guidance for infected systems, 

given by the NHS, is to disconnect from the 

network straight away. This however is 

dependent on the responsiveness of users, and 

the effectiveness of virus detection to halt the 

spread. 

 

 

This report explores how the speed of both the 

detection and preventative action affect the 

spread of viruses. For this, a real-world dataset 

of peer-to-peer interactions from the Stanford 

large network dataset collection (Leskovec, J., 

et al., 2004) is employed to run these 

experiments. This dataset is ideal for modelling 

the propagation of worm-like dynamics in the 

network where each node is representative of a 

device capable of spreading infections. 

While many epidemiological models rely on the 

commonly known SIR (Susceptible-Infected-

Recovered) framework (Kermack, W. O., et al., 

1927), these models often fail to account for 

technological interventions such as detection 

and isolation. To address this, the SIDR model 

(Susceptible-Infected-Detected-Recovered) is 

proposed. This incorporates a “detected” state 

to simulate the moment a virus is detected by a 

system’s security software. This adds a delay 

between infection and recovery (user 

intervention) which is important for accuracy 

for modelling cyber-attacks. 

The strategies of attack will differ throughout 

the experiment. The three distinct strategies 

include: a random selection of infected nodes, 

chosen with no regard for the network structure. 

A strategic attack, where central / high-degree 

nodes are chosen for initial infection. And a 

peripheral attack, where the infection is started 

at the leaf nodes of the network. As a safety 

feature, only leaf nodes with at least one out-

connection can be chosen, as otherwise, the 

virus would not spread. 
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The main questions that guide these 

experiments are: 

- How does the responsiveness of detection 

reduce outbreak size? 

- How does proactive recovery reduce the 

infection? 

- What virus-spreading strategy creates the 

largest outbreak? 

The findings from this study aim to inform 

practical cybersecurity policies, particularly in 

infrastructural system (e.g. healthcare, and 

finance) as well as laying the foundations to 

further models and research in this area. By 

simulating the infection dynamics under 

realistic conditions, the importance of detection 

and user intervention are emphasized in the 

effort to minimise the risk of any modern digital 

epidemics. 
 

2. Methods 

The exact dataset used in this report was the 

“p2p-Gnutella08”. This data outlines a directed 

graph in which nodes represent users, and edges 

represent network connections.  

To load the graph, into a processable format 

“NetworkX“ (Hagberg, A. A., et al., 2008) was 

used. This library provides all the necessary 

tools to visualise and analyse networks. 
 

2.1 | Network Structure 

The dataset discussed provided a directed graph 

with 6,301 nodes and 20,777 edges. As this 

experiment is based on the effects of an 

implemented system rather than the structure of 

the network, it was seen as unnecessary to 

choose a dataset with double or triple these 

values. 

As seen in Figure 1, both the in-degree and out-

degree distributions are heavily tailed. This 

suggests most nodes have a low connectivity. 

Although the number of in-degrees would be 

equal to that of the out-degrees, these 

distributions show that there are many nodes 

with a low number of each, and some with a 

high number of connections. This therefore 

suggests that there are hubs.  

 

Figure 1: The in-degree and out-degree distributions of 

the p2p-Gnutella08 network. 

The presence of hubs is very common to 

complex networks such as the internet. This 

structure ha important values such as reducing 

the steps to each node but also increasing the 

vulnerability to attacks. 

Through sampling the network, the average 

connectivity was estimated to be approximately 

3.28.  

This suggests that each node, on average, is 

connected to a small number of other nodes.  

Although this connectivity is not uniform 

throughout the network.  

Figure 2 shows the core structure of the 

network. The core nodes (in yellow) have 

higher connectivity averages and therefore are 

much more critical to the network structure and 

stability.  

 

Figure 2: The k-core structure of the network. 

The largest connected component of the 

network has a size of 2068. This component is 

the densest subgraph of the network.  
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This section has an important role in supporting 

peer-to-peer activity. As there are 6,301 nodes, 

it can be shown that only ~33% of nodes belong 

to this component. This indicates a fragmented 

topology where the central cluster is surrounded 

by smaller, weakly connected components, and 

supports the layered structure seen in Figure 2. 

The insight into the structure of the network is 

important for understanding the dynamics of 

virus propagation within. Hubs and core nodes 

act as a form of ‘super-spreaders’, transmitting 

the virus rapidly across the network as a result 

of their high connectivity value.  

The average connectivity of 3.28 suggests a 

limited transmission capability as the centrality 

is lower hut having a highly connected core 

significantly reduces the average path length for 

faster virus spread. 
 

2.2 | SIDR Model 

As an extension to the Susceptible-Infected-

Recovered (SIR) model, a custom model was 

created. This being the Susceptible-Infected-

Detected-Recovered (SIDR) model.  

This model works similarly to the SIR model, 

by having uninfected nodes being susceptible to 

infection as infected nodes send messages 

across the network. As this experiment is to 

determine the importance of detection and 

response to a virus, the extra “detected” step 

shows when a system recognises that it has been 

infected. This represents the antivirus in the 

system and metaphorically “tells” the user that 

the virus has been detected.  

From here, the transition between detected and 

recovered represents the user’s responsiveness 

to the virus detection. As discussed, the advice 

for any infected systems is to disconnect from 

the network. Therefore, upon doing so, a node 

is recovered. From here, a node either stays 

disconnected, or the virus can be removed after 

a given time.  

Removal of the virus then reconnects the node 

to the network, making the system susceptible 

again.  

Therefore, this model can also be considered as 

SIDRS, similar to the commonly known, 

looping SIS (Susceptible-Infected-Susceptible) 

model. Figure 3 visualises the loop for the 

discussed SIDR model. 

 

Figure 3: The state loop of the SIDR(S) model. 

It should be noted that the recovered state is 

looped back, representing nodes that choose not 

to ‘remove’ the virus and reconnect. 
 

2.3 | Model Dynamics 

The dynamics of the model were important to 

create a realistic simulation, with the attempt to 

implement awareness and attack strategies. 
 

2.3.1 | Initial Infected Selection 

As viruses are commonly started through 

targeted attacks, it was important to compare 

the spread, dependent on the initially infected 

systems. Figure 4 shows the three methods used 

for selecting the 60 initial infected. 

 

Figure 4: Visualisations of different initial infected 

selection tactics. 
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Here there are three methods: peripheral, 

strategic, and random. The random method, as 

suggested, selects completely random nodes, 

without considering its position in the network.  

Strategic attacks target the nodes with the 

highest degree centrality value. This naturally 

creates a faster spread as hubs are a primary 

target.  

However, peripheral attacks target those with 

the lowest degree centrality. These are usually 

the leaf nodes, unless the graph is fully 

connected. As the network also consists of 

disconnected nodes or nodes with only 

outgoing edges, the peripheral nodes were 

selected from the set of nodes with at least one 

successor. 
 

2.3.2 | Awareness 

As viruses spread through networks, it is 

common for there to be some social interaction 

between neighbouring users. For this 

experiment, this information diffusion is 

represented as an awareness level which affects 

the proactiveness of the agents that controls the 

state transition from D to R. 

In the model, the proactiveness of any node is 

increased if more than 20% of it’s neighbours 

are infected. This formula for 𝑃𝑖
𝑡+1 is as 

follows: 

𝑃𝑖
𝑡+1 = {

min (1.0, 𝑃𝑖
𝑡 +

0.5

1 + 𝑒−𝑁𝑖(𝐼)+2
) 𝑖𝑓 𝑁𝑖(𝐼) > 20%

max(0.1, 0.99 ∗ 𝑃𝑖
𝑡) 𝑖𝑓 𝑁𝑖(𝐼) = 0 

 

Where: 

𝑁𝑖(𝐼)  ∶    𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 

The threshold of 20% avoids the model 

becoming overly sensitive and overreacting to 

threats. The sigmoid function is used for a 

smooth buildup, rather than a static linear 

increase. If a node has no infected neighbours, 

they become less proactive. 

To add further dynamics to the system, the 

proactiveness values themselves diffuse to 

neighbours.  

 

Therefore, the proactiveness of any node 

averages towards that of its neighbours. 

𝑃𝑖
𝑡+1 = 0.9 ∙  𝑃𝑖

𝑡 + 0.1 ∙ (
1

|𝑁𝑖|
∑ 𝑃𝑗

𝑡

𝑗∈𝑁𝑖

) 

Where:  

𝑁𝑖  :  𝑆𝑒𝑡 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑖 

These dynamics and feedback loops for 

changing the proactiveness (after it has been 

assigned a value) adds a further level of realism 

to the model, making  the research much more 

relevant than results drawn from static graphs. 
 

2.4 | Simulation Parameters 

The parameters that can be used to initialise the 

system are the average proactiveness, the 

average detection (or antivirus), and the chosen 

attack strategy (discussed in Section 2.3.1). 

To add slight randomness to the system, when 

given the means of the user proactiveness and 

detection, these were then selected from a 

random distribution with the given mean as  the 

centre, and a 0.15 standard deviation. This is 

illustrated in Figure 5. 

 

Figure 5: A visualisation of the distribution of initial 

values, given the mean (𝜇). 

This adds an element of randomness to the 

initial values, ensuring all node values avoid 

convergence at the same pace. 
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2.5 | Evaluation Metrics 

The metrics used to evaluate the changes in 

virus spread dynamic in the network are as 

follows: 

• Susceptible nodes over time 

• Infected nodes over time 

• Detected nodes over time 

• Recovered nodes over time 

• R0 value over time 

To ensure the results are not just a result of 

randomness, each parameter combination was 

run 5 times, and the shown metrics are the 

average of these runs.  
 

3. Results & Analysis 

3.1 | Attack Choices 

The results obtained from the parameter sweep 

provide insight into how different attack 

strategies influence the spread of a virus across 

the network. As illustrated in Figure 6, which 

displays the average SIDR curves for each 

strategy, there are subtle but important 

differences between the outcomes. Although, 

some of these differences are difficult to see. 

 

Figure 6: The average SIDR curves for all parameter 

sweeps, for each strategy. 

As expected, strategic attacks on, high-degree 

nodes, lead to a more aggressive spread of the 

virus. These hubs help with transmission to 

many directly connected neighbours which 

accelerates the outbreak in the early stages. In 

contrast, peripheral attacks on lower-degree 

nodes on the outer edges of the network, result 

in a slower infection rate.  

This is consistent with the reduced potential for 

immediate spread in sparsely connected 

regions. 

The recovery dynamics differ between 

strategies. The peripheral attack shows a more 

effective and faster decline in infections. This is 

likely due to the limited connectivity of infected 

nodes, which as a result limits the spread. 

However, infections initiated in hubs tend to 

persist longer, with the virus remaining active 

over an extended period in the case of strategic 

attacks. This prolonged activity is due to the 

higher centrality of the nodes, allowing the 

virus to propagate further through the network 

before containment mechanisms have an effect. 

Interestingly, the random attack strategy yields 

similar dynamics to the strategic case. This 

resemblance may be due to the topology of the 

network, particularly because of the existence 

of a giant connected component that contains 

approximately 33% of the network’s nodes. 

Given that 60 nodes are initially infected in 

each simulation, approximately 20 of these are 

likely to fall within this component by chance, 

including nodes with high centrality.  

As a result, even random infections may 

quickly reach the hubs, producing a cascade 

effect like that observed in targeted strategic 

attacks. However, this outcome reflects the 

specific structure of the network rather than the 

effectiveness of the random strategy. In larger 

or more sparse networks, these cascading 

effects from random attacks would be less 

common. 

The basic reproduction number (R₀) gives the 

infection rate across the network. As shown in 

Figure 7, the initial R₀ values vary significantly 

across strategies. Strategic attacks begin with a 

high R₀, showing the discussed rapid early 
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spread, while peripheral attacks begin with 

much lower values.  

 

Figure 7: The average 𝑅0 value for every parameter 

combination, for each strategy. 

However, over some time, all strategies 

converge to similar final R₀ values slightly 

above zero. This convergence suggests that 

there is a stable equilibrium state in the system’s 

dynamics, acting as a natural attractor 

determined by the model’s parameters and the 

underlying network structure, rather than the 

initial infection strategy. 

In summary, the choice of initial infection 

strategy affects short-term outbreak dynamics. 

This includes the speed and size of early virus 

spread. However, in the long run, all strategies 

appear to lead the system toward a steady state 

which has a low-level, persistent virus. This 

behaviour may be a result of the adaptive 

elements in the model, or inherent stabilizing 

properties of the network topology. Therefore, 

on average, while initial strategies can 

influence the early stages of an outbreak, they 

do not appear to alter the long-term scale or 

presence. 

 

 

 

 

 

 

 

 

3.2 | Antivirus & Proactiveness 

To assess the effectiveness of proactiveness and 

antivirus on the system, the heatmaps in Figure 

8 were created. These show the different 

parameter values, plotted with the number of 

steps taken for the virus to go extinct (0 

infected). This was seen as the only reasonable 

metric to use for the comparison, as basing the 

heatmaps off values such as the final detected, 

or final recovered nodes would result in a 

complete favourability towards one of the 

parameters due to the loop structure seen in 

Figure 3. 

 

Figure 8: Heatmaps for the antivirus and proactiveness 

parameter values, showing the steps until a virus goes 

extinct. 

In these heatmaps, it is shown that the higher 

levels of proactiveness and antivirus detection 

result in a faster extinction. This is natural to the 

system as it is based off probabilities, and 

therefore having higher values means more 

nodes become recovered more efficiently, 

leading the viruses’ eventual extinction. 

For the strategies in relation to these 

parameters, it was shown that the strategic 

extinctions take the longest, followed by 

random and then peripheral. Reinforcing the 

evidence in the graphs seen in Figure 6.  

Again, these results are not completely different 

due to the network topology, which seems to 

have elements of small-world graphs. 
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4. Discussion 

This experiment demonstrated that both 

detection mechanisms, and proactive user 

responses are essential to supressing the spread 

of worm viruses in peer-to-peer networks, using 

the SIDR framework. While the initial strategy 

for selecting nodes to infects (whether targeting 

strategic, peripheral, or random nodes) 

influences the early dynamics of the outbreak, 

these differences tend to converge over time. As 

a result, the system converges toward a natural 

attractor that is a result of the feedback in the 

adaptive dynamics, and the network topology. 

This happens regardless of the initial 

conditions. 

However, this experiment had some limitations 

that may have been key influencers to the 

results seen in Section 3. 

The first limitation is the static network 

structure. This is because no nodes were added 

or removed, and no new connections were 

formed. As a result, this could have been a 

limitation on the realism of a system 

demonstrating traits similar to social networks. 

Although, it was still a valid assumption to 

make for closed systems, such as enterprises, or 

healthcare networks, mirroring the 

“WannaCry” attack on the NHS (NHS England, 

2023).  

The second limitation regards the behavioural 

response of nodes becoming uniform across the 

network. As a level of realism, discussed in 

Section 2.3, a system of information diffusion 

was added as a way of simulating realistic 

communication between nodes to make each 

other more aware of the virus. However, due to 

the giant connected component at the core of 

the network, awareness was spread and 

increased rapidly. This caused most nodes to 

gain the same level of proactiveness  and 

therefore homogenized the response to 

infection. As a result, this reduced the diversity 

of behaviours, and pushed the system towards a 

convergence, which was not always desired. 

The final limitation was the overall network 

topology. Again, because of the centralised 

core, the paths viruses needed to take in order 

to infect a hub were relatively short. This was 

the case even when the peripheral nodes were 

initially infected. This reduced any impact of 

the different strategies and led to the 

numerically similar behaviours seen in many of 

the results presented. 

To summarise, while the short-term effects of 

strategy selection are seen, any long-term 

behaviour is overshadowed by the effects of 

network structure, and information diffusion.  

For future work in this area, it would be 

interesting to explore how dynamic networks, 

or localised topologies react to the spread of a 

worm virus, which can then better investigate 

the resilience of real-world systems to total 

infection. 
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