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Abstract — This report analyses the spread of
worm viruses with varied attack strategies
though peer-to-peer networks, outlining the
importance of high-quality detection methods
and good wuser proactiveness for the
minimisation of the spread of worms through a
network.

1. Introduction

Computer viruses, much like biological
pathogens, self-replicate by taking advantage of
system weaknesses and attaching themselves to
a host program to cause the virus instructions to
be executed. (Chen, T. M., et al., 2004)

Worm viruses travel from system to system
through the networks wused to send
communication between systems. These were
built with the intent of distributing workloads,
but instead, they soon became considered to be
destructive. (Spafford, E. H., 1989).

In 2017, a worm virus known as “WannaCry”
infected NHS organizations. This attack
encrypted critical information and demanded a
ransom. (NHS England, 2023). This became
one of the most significant virus attacks seen,
affecting over a third of systems within the
NHS — highlighting the importance of detection
and prevention tactics to avoid a full network
infection.

The current guidance for infected systems,
given by the NHS, is to disconnect from the
network straight away. This however is
dependent on the responsiveness of users, and
the effectiveness of virus detection to halt the
spread.
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This report explores how the speed of both the
detection and preventative action affect the
spread of viruses. For this, a real-world dataset
of peer-to-peer interactions from the Stanford
large network dataset collection (Leskovec, J.,
et al, 2004) is employed to run these
experiments. This dataset is ideal for modelling
the propagation of worm-like dynamics in the
network where each node is representative of a
device capable of spreading infections.

While many epidemiological models rely on the
commonly known SIR (Susceptible-Infected-
Recovered) framework (Kermack, W. O., et al.,
1927), these models often fail to account for
technological interventions such as detection
and isolation. To address this, the SIDR model
(Susceptible-Infected-Detected-Recovered) is
proposed. This incorporates a “detected” state
to simulate the moment a virus is detected by a
system’s security software. This adds a delay
between infection and recovery (user
intervention) which is important for accuracy
for modelling cyber-attacks.

The strategies of attack will differ throughout
the experiment. The three distinct strategies
include: a random selection of infected nodes,
chosen with no regard for the network structure.
A strategic attack, where central / high-degree
nodes are chosen for initial infection. And a
peripheral attack, where the infection is started
at the leaf nodes of the network. As a safety
feature, only leaf nodes with at least one out-
connection can be chosen, as otherwise, the
virus would not spread.
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The main questions that these

experiments are:

guide

- How does the responsiveness of detection
reduce outbreak size?

- How does proactive recovery reduce the
infection?

- What virus-spreading strategy creates the
largest outbreak?

The findings from this study aim to inform
practical cybersecurity policies, particularly in
infrastructural system (e.g. healthcare, and
finance) as well as laying the foundations to
further models and research in this area. By
simulating the infection dynamics under
realistic conditions, the importance of detection
and user intervention are emphasized in the
effort to minimise the risk of any modern digital
epidemics.

2. Methods

The exact dataset used in this report was the
“p2p-Gnutella08”. This data outlines a directed
graph in which nodes represent users, and edges
represent network connections.

To load the graph, into a processable format
“NetworkX“ (Hagberg, A. A., et al., 2008) was
used. This library provides all the necessary
tools to visualise and analyse networks.

2.1 | Network Structure

The dataset discussed provided a directed graph
with 6,301 nodes and 20,777 edges. As this
experiment is based on the effects of an
implemented system rather than the structure of
the network, it was seen as unnecessary to
choose a dataset with double or triple these
values.

As seen in Figure I, both the in-degree and out-
degree distributions are heavily tailed. This
suggests most nodes have a low connectivity.
Although the number of in-degrees would be
equal to that of the out-degrees, these
distributions show that there are many nodes
with a low number of each, and some with a
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high number of connections. This therefore
suggests that there are hubs.

In-degree Distribution Out-degree Gistribution
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Figure 1: The in-degree and out-degree distributions of
the p2p-Gnutella08 network.

The presence of hubs is very common to
complex networks such as the internet. This
structure ha important values such as reducing
the steps to each node but also increasing the
vulnerability to attacks.

Through sampling the network, the average
connectivity was estimated to be approximately
3.28.

This suggests that each node, on average, is
connected to a small number of other nodes.

Although this connectivity is not uniform
throughout the network.

Figure 2 shows the core structure of the
network. The core nodes (in yellow) have
higher connectivity averages and therefore are
much more critical to the network structure and
stability.

Figure 2: The k-core structure of the network.

The largest connected component of the
network has a size of 2068. This component is
the densest subgraph of the network.
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This section has an important role in supporting
peer-to-peer activity. As there are 6,301 nodes,
it can be shown that only ~33% of nodes belong
to this component. This indicates a fragmented
topology where the central cluster is surrounded
by smaller, weakly connected components, and
supports the layered structure seen in Figure 2.

The insight into the structure of the network is
important for understanding the dynamics of
virus propagation within. Hubs and core nodes
act as a form of ‘super-spreaders’, transmitting
the virus rapidly across the network as a result
of their high connectivity value.

The average connectivity of 3.28 suggests a
limited transmission capability as the centrality
is lower hut having a highly connected core
significantly reduces the average path length for
faster virus spread.

2.2 | SIDR Model

As an extension to the Susceptible-Infected-
Recovered (SIR) model, a custom model was
created. This being the Susceptible-Infected-
Detected-Recovered (SIDR) model.

This model works similarly to the SIR model,
by having uninfected nodes being susceptible to
infection as infected nodes send messages
across the network. As this experiment is to
determine the importance of detection and
response to a virus, the extra “detected” step
shows when a system recognises that it has been
infected. This represents the antivirus in the
system and metaphorically “tells” the user that
the virus has been detected.

From here, the transition between detected and
recovered represents the user’s responsiveness
to the virus detection. As discussed, the advice
for any infected systems is to disconnect from
the network. Therefore, upon doing so, a node
is recovered. From here, a node either stays
disconnected, or the virus can be removed after
a given time.

Removal of the virus then reconnects the node
to the network, making the system susceptible
again.
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Therefore, this model can also be considered as
SIDRS, similar to the commonly known,
looping SIS (Susceptible-Infected-Susceptible)
model. Figure 3 visualises the loop for the
discussed SIDR model.

Recovery Time Infection Rate

Responsiveness Detection Rate

Figure 3: The state loop of the SIDR(S) model.

It should be noted that the recovered state is
looped back, representing nodes that choose not
to ‘remove’ the virus and reconnect.

2.3 | Model Dynamics

The dynamics of the model were important to
create a realistic simulation, with the attempt to
implement awareness and attack strategies.

2.3.1 | Initial Infected Selection

As viruses are commonly started through
targeted attacks, it was important to compare
the spread, dependent on the initially infected
systems. Figure 4 shows the three methods used
for selecting the 60 initial infected.

Peripheral A Strategic

Figure 4: Visualisations of different initial infected
selection tactics.
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Here there are three methods: peripheral,
strategic, and random. The random method, as
suggested, selects completely random nodes,
without considering its position in the network.

Strategic attacks target the nodes with the
highest degree centrality value. This naturally
creates a faster spread as hubs are a primary
target.

However, peripheral attacks target those with
the lowest degree centrality. These are usually
the leaf nodes, unless the graph is fully
connected. As the network also consists of
disconnected nodes or nodes with only
outgoing edges, the peripheral nodes were
selected from the set of nodes with at least one
successor.

2.3.2 | Awareness

As viruses spread through networks, it is
common for there to be some social interaction
between neighbouring wusers. For this
experiment, this information diffusion is
represented as an awareness level which affects
the proactiveness of the agents that controls the
state transition from D to R.

In the model, the proactiveness of any node is
increased if more than 20% of it’s neighbours
are infected. This formula for Pf*' is as
follows:

0.5
. t .
Pit+1 _ min (1'O'Pi +m) if N;(I) > 20%
max(0.1,0.99 « PY) if N;(I) =0

Where:
N;(I) : Number of infected neighbours

The threshold of 20% avoids the model
becoming overly sensitive and overreacting to
threats. The sigmoid function is used for a
smooth buildup, rather than a static linear
increase. If a node has no infected neighbours,
they become less proactive.

To add further dynamics to the system, the
proactiveness values themselves diffuse to
neighbours.
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Therefore, the proactiveness of any node
averages towards that of its neighbours.
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pP*1=09 - Pf+0.1 -

Where:
N; : Set of successors tonode i

These dynamics and feedback loops for
changing the proactiveness (after it has been
assigned a value) adds a further level of realism
to the model, making the research much more
relevant than results drawn from static graphs.

2.4 | Simulation Parameters

The parameters that can be used to initialise the
system are the average proactiveness, the
average detection (or antivirus), and the chosen
attack strategy (discussed in Section 2.3.1).

To add slight randomness to the system, when
given the means of the user proactiveness and
detection, these were then selected from a
random distribution with the given mean as the
centre, and a 0.15 standard deviation. This is
illustrated in Figure 5.

e

u

Figure 5: A visualisation of the distribution of initial
values, given the mean (U).

This adds an element of randomness to the
initial values, ensuring all node values avoid
convergence at the same pace.
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2.5 | Evaluation Metrics

The metrics used to evaluate the changes in
virus spread dynamic in the network are as
follows:

e Susceptible nodes over time
e Infected nodes over time

e Detected nodes over time

e Recovered nodes over time
o RO value over time

To ensure the results are not just a result of
randomness, each parameter combination was
run 5 times, and the shown metrics are the
average of these runs.

3. Results & Analysis
3.1 | Attack Choices

The results obtained from the parameter sweep
provide insight into how different attack
strategies influence the spread of a virus across
the network. As illustrated in Figure 6, which
displays the average SIDR curves for each
strategy, there are subtle but important
differences between the outcomes. Although,
some of these differences are difficult to see.

Figure 6: The average SIDR curves for all parameter
sweeps, for each strategy.

As expected, strategic attacks on, high-degree
nodes, lead to a more aggressive spread of the
virus. These hubs help with transmission to
many directly connected neighbours which
accelerates the outbreak in the early stages. In
contrast, peripheral attacks on lower-degree
nodes on the outer edges of the network, result
in a slower infection rate.
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This is consistent with the reduced potential for

immediate spread in sparsely connected
regions.
The recovery dynamics differ between

strategies. The peripheral attack shows a more
effective and faster decline in infections. This is
likely due to the limited connectivity of infected
nodes, which as a result limits the spread.
However, infections initiated in hubs tend to
persist longer, with the virus remaining active
over an extended period in the case of strategic
attacks. This prolonged activity is due to the
higher centrality of the nodes, allowing the
virus to propagate further through the network
before containment mechanisms have an effect.

Interestingly, the random attack strategy yields
similar dynamics to the strategic case. This
resemblance may be due to the topology of the
network, particularly because of the existence
of a giant connected component that contains
approximately 33% of the network’s nodes.
Given that 60 nodes are initially infected in
each simulation, approximately 20 of these are
likely to fall within this component by chance,
including nodes with high centrality.

As a result, even random infections may
quickly reach the hubs, producing a cascade
effect like that observed in targeted strategic
attacks. However, this outcome reflects the
specific structure of the network rather than the
effectiveness of the random strategy. In larger
or more sparse networks, these cascading
effects from random attacks would be less
common.

The basic reproduction number (Ro) gives the
infection rate across the network. As shown in
Figure 7, the initial Ro values vary significantly
across strategies. Strategic attacks begin with a
high Ro, showing the discussed rapid early
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spread, while peripheral attacks begin with
much lower values.

SR Value Over Time - Strategy: strategic SRO Value Cver Time - Strateqy: pesipheral

Figure 7: The average R value for every parameter
S S 0 E J
combination, for each strategy.

However, over some time, all strategies
converge to similar final Ro values slightly
above zero. This convergence suggests that
there is a stable equilibrium state in the system’s
dynamics, acting as a natural attractor
determined by the model’s parameters and the
underlying network structure, rather than the
initial infection strategy.

In summary, the choice of initial infection
strategy affects short-term outbreak dynamics.
This includes the speed and size of early virus
spread. However, in the long run, all strategies
appear to lead the system toward a steady state
which has a low-level, persistent virus. This
behaviour may be a result of the adaptive
elements in the model, or inherent stabilizing
properties of the network topology. Therefore,
on average, while initial strategies can
influence the early stages of an outbreak, they
do not appear to alter the long-term scale or
presence.
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3.2 | Antivirus & Proactiveness

To assess the effectiveness of proactiveness and
antivirus on the system, the heatmaps in Figure
8 were created. These show the different
parameter values, plotted with the number of
steps taken for the virus to go extinct (0
infected). This was seen as the only reasonable
metric to use for the comparison, as basing the
heatmaps off values such as the final detected,
or final recovered nodes would result in a
complete favourability towards one of the
parameters due to the loop structure seen in
Figure 3.

Stap to Extincton Strmtegy; Wrategic) Swph th EXnction ESUVRGY: perghersl .
Steps ta Extincton (Straegy. andom)

Figure 8: Heatmaps for the antivirus and proactiveness
parameter values, showing the steps until a virus goes
extinct.

In these heatmaps, it is shown that the higher
levels of proactiveness and antivirus detection
result in a faster extinction. This is natural to the
system as it is based off probabilities, and
therefore having higher values means more
nodes become recovered more efficiently,
leading the viruses’ eventual extinction.

For the strategies in relation to these
parameters, it was shown that the strategic
extinctions take the longest, followed by
random and then peripheral. Reinforcing the
evidence in the graphs seen in Figure 6.

Again, these results are not completely different
due to the network topology, which seems to
have elements of small-world graphs.
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4. Discussion

This experiment demonstrated that both
detection mechanisms, and proactive user
responses are essential to supressing the spread
of worm viruses in peer-to-peer networks, using
the SIDR framework. While the initial strategy
for selecting nodes to infects (whether targeting
strategic, peripheral, or random nodes)
influences the early dynamics of the outbreak,
these differences tend to converge over time. As
a result, the system converges toward a natural
attractor that is a result of the feedback in the
adaptive dynamics, and the network topology.
This happens regardless of the initial
conditions.

However, this experiment had some limitations
that may have been key influencers to the
results seen in Section 3.

The first limitation is the static network
structure. This is because no nodes were added
or removed, and no new connections were
formed. As a result, this could have been a
limitation on the realism of a system
demonstrating traits similar to social networks.
Although, it was still a valid assumption to
make for closed systems, such as enterprises, or
healthcare networks, mirroring the
“WannaCry” attack on the NHS (NHS England,
2023).

The second limitation regards the behavioural
response of nodes becoming uniform across the
network. As a level of realism, discussed in
Section 2.3, a system of information diffusion
was added as a way of simulating realistic
communication between nodes to make each
other more aware of the virus. However, due to
the giant connected component at the core of
the network, awareness was spread and
increased rapidly. This caused most nodes to
gain the same level of proactiveness and
therefore homogenized the response to
infection. As a result, this reduced the diversity
of behaviours, and pushed the system towards a
convergence, which was not always desired.

The final limitation was the overall network
topology. Again, because of the centralised
core, the paths viruses needed to take in order
to infect a hub were relatively short. This was
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the case even when the peripheral nodes were
initially infected. This reduced any impact of
the different strategies and led to the
numerically similar behaviours seen in many of
the results presented.

To summarise, while the short-term effects of
strategy selection are seen, any long-term
behaviour is overshadowed by the effects of
network structure, and information diffusion.

For future work in this area, it would be
interesting to explore how dynamic networks,
or localised topologies react to the spread of a
worm virus, which can then better investigate
the resilience of real-world systems to total
infection.
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